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Abstract

Algebraic systems, abstracting properties of intervals, are discussed.
Certain algebraic structures close to vector spaces, ordered rings, fields
and algebras are axiomatically introduced and studied.
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1 Introduction

In numerical analysis one often works with approximate numbers and errors
(error bounds). An approximate number x that is known up to an error
bound δ ≥ 0 represents any real number x̃ between x − δ and x + δ, i. e.
x− δ ≤ x̃ ≤ x+ δ. Alternatively we can write | x− x̃ |≤ δ or x̃ ∈ x+ [−δ, δ].
From this point of view an error bound δ ≥ 0 can be identified with the
centred (origin symmetric, 0-symmetric) interval [−δ, δ]. Thus formally the
terms centred interval and error (error bound) can be used as synonyms.
Going a step further, an interval A = [a′−a′′, a′+a′′] can be conceived as a
pair A = (a′; a′′) consisting of a real number a′ and an error bound a′′ ≥ 0;
thereby a′′ is considered as the (upper bound of the) error in the (exact)
number a′. Thus again the terms interval and approximate number can be
considered as synonyms. Other commonly used notation for an approximate
number A = (a′; a′′) is A = a′ ± a′′.

In many situations it has been useful and natural to introduce arithmetic
operations and relations for approximate numbers (intervals) in the way we
introduce operations and relations for real numbers. The resulting arith-
metic system is known as interval arithmetic. There is a natural tendency
in interval arithmetic to follow the development of real arithmetic: study of



algebraic properties, classification into known algebraic systems, axiomati-
zation, etc. From one side, n-dimensional intervals are added and multiplied
by scalars like real vectors, on the other side one-dimensional intervals are
added, subtracted, multiplied and divided like real numbers. However, in-
tervals do not form neither vector spaces nor rings. Therefore many authors
have studied the algebraic properties of intervals and have tried to formulate
algebraic systems abstracting their properties, see e.g. [4], [6], [8], [9], [21],
[23], [29], [32], [33], [36], [38] et al. However, still interval arithmetic has not
been completely axiomatized. The present work intends to fill up this gap
by introducing certain new algebraic systems emanating from the algebraic
properties of intervals.

Interval arithmetic has specific peculiarities in comparison to real arith-
metic. For example, multiplying an error (centred interval) by −1 does not
influence the result. Another peculiarity is that the ordering of errors has
the meaning of inclusion (e. g. δ1 ≤ δ2 means [−δ1, δ1] ⊆ [−δ2, δ2]), while
the ordering of real numbers is preceding “≤” (less than or equal to). Thus
for approximate numbers (at least) two different orderings appear, one of
which having the meaning of preceding, and another one having the meaning
of inclusion. Inclusion isotonicity is an important practically useful property
of interval arithmetic, which is not valid in real arithmetic, e. g. multiplica-
tion by scalars is (inclusion) order isotone in interval arithmetic, but is not
(preceding) order isotone in real arithmetic (a ≤ b =⇒ γa ≤ γb not true in
general).

Since any interval A = (a′; a′′) is a sum of a real number a′ and a centred
interval (0; a′′) = [−a′′,+a′′] one should investigate the algebraic properties
of centred intervals as long as the algebra of real numbers is well-known.
Regarding addition of errors (centred intervals) the situation is the same
as with real numbers. Being identified with nonnegative numbers, errors
form — as nonnegative numbers do — an additive commutative monoid.
Hence they can be naturally embedded in a group (as we do with numbers);
thereby some new—improper—elements are introduced. Then appropriate
definitions of inclusion and multiplication are needed for the new elements.
We note that inclusion and multiplication can be extended in the additive
group in such a way that multiplication is inclusion isotone. This practically
important extension of multiplication has been thoroughly studied in [6], [7],
[8]. In recognition to E. Kaucher’s contribution this extension of interval
arithmetic is known as Kaucher interval arithmetic.

This work continues Kaucher’s studies on the fundamentals of interval
arithmetic by developing an axiomatic algebraic theory of errors (centred
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intervals over R) and approximate numbers (intervals over R). We have
shown in [12], [13], [16] that centred intervals play a special role in the alge-
braic study of intervals by investigating in some detail properties related to
multiplication by scalars. Here we briefly outline this approach and continue
our study by developing the abstract system related to (inner) multiplica-
tion — an operation that has the property of being (unlike multiplication of
reals) order isotone. In the short note [17] we sketched the axiomatization
of the arithmetic for centred intervals. Here we develop the axiomatization
of generalized interval arithmetic.

In Section 2 we begin by introducing certain operations and systems
for real numbers that are of interest to interval arithmetic; then we outline
the latter in a manner suitable for our purposes. In Section 3 we recall
the theory of quasivector spaces of centred intervals, and introduce order
obtaining so-called e-linear spaces; we then introduce inner multiplication
and define e-rings and e-fields. In Section 4 an e-algebra as a combination
between an e-ring and an e-linear space is introduced. We then consider the
direct sum of a ring and an e-algebra and define multiplication, obtaining
thus an interval algebra. It has been shown that the space of intervals over
R is a special case of such an interval algebra.

2 Preliminaries: Real and Interval Arithmetic

We shall first point out several issues from real arithmetic related to interval
arithmetic, then we shall briefly present the basics of interval arithmetic in
a form suitable for our study.

2.1 Real Arithmetic: Issues Related to Intervals

The ordered field of reals. By R we denote the set of reals; RD =
(R,+, ·,≤) is the linearly ordered (l. o.) field of reals (the reason why
we use distinct notations R, RD for the set, resp. the field of reals will
become clear in the sequel). As usually Rn denotes the Cartesian product
R× R× . . .× R (n times). For a = (α1, ..., αk) ∈ Rn, b = (β1, ..., βk) ∈ Rn,
the partial order “≤” is given component-wise by a ≤ b ⇐⇒ ai ≤ bi for
all i = 1, ..., n. The n-dimensional (partially) ordered real vector space is
denoted RnD = (Rn,+,RD, ·,≤), n ≥ 1; here “+” denotes vector addition
and “·” denotes multiplication by scalars:

(α1, α2, ..., αk) + (β1, β2, ..., βk) = (α1 + β1, α2 + β2, ..., αk + βk), (1)

γ · (α1, ..., αk) = γ(α1, ..., αk) = (γα1, ..., γαk), γ ∈ R; (2)
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again we use different notation for the set Rn and the (ordered) vector space
RnD.

2.1.1 The quasivector multiplication by real scalars

Consider the system (Rk,+,RD, ∗,≤), consisting of the set Rk of all k-tuples
a = (α1, α2, ..., αk), αi ∈ R, i = 1, ..., k, together with the operations (1) and

γ ∗ a = γ ∗ (α1, ..., αk) = |γ|(α1, ..., αk) = (|γ|α1, ..., |γ|αk), γ ∈ R. (3)

The operation (3) is called quasivector multiplication by scalars; the lat-
ter differs from familiar vector (linear) multiplication by scalars (2) as far
as negative scalars are concerned. For example, the quasivector product of
the triple (1, 1, 1) by the scalar −2 is −2 ∗ (1, 1, 1) = (2, 2, 2), whereas the
vector product of (1, 1, 1) by −2 yields −2 · (1, 1, 1) = (−2,−2,−2). For a
better distinction we shall sometimes use the ajective “linear” for the vector
multiplication by scalars.

The system RkED = (Rk,+,RD, ∗,≤) will be further called the canonical
k-dimensional quasivector space. Note that multiplication by −1 (negation)
in (Rk,+,RD, ∗) is same as identity; however there is an opposite operator:
opp(α1, α2, ..., αk) = (−α1,−α2, ...,−αk).

The system RkED = (Rk,+,RD, ∗,≤) differs from the vector space RkD =
(Rk,+,RD, ·) by having a quasivector multiplication by scalars instead of
a linear one. In the space RkED = (Rk,+,RD, ∗,≤) the second distributive
law (α + β) ∗ c = α ∗ c + β ∗ c does not hold in general. Indeed, for α = 1,
β = −1 we have 0 = (1−1)∗ c 6= 1∗ c+(−1)∗ c = 2∗ c. However, a so-called
quasidistributive law takes place. To formulate it, we shall make use of the
binary set Λ = {+,−} and the function σ : RD −→ Λ defined by:

σ(γ) =

{
+, if γ ≥ 0,
−, if γ < 0.

(4)

For a ∈ Rk we make the convention a+ = a, a− = −a. Then the symbolic
notation aλ for a ∈ Rk, λ ∈ Λ, makes sense; namely aλ is either a = a+
or a− according to the binary value of λ. Multiplication by scalars (3) is
distributive generally over nonnegative scalars: (α + β) ∗ c = α ∗ c + β ∗ c,
α ≥ 0, β ≥ 0, c ∈ Rk. It turns out that the latter is equivalent to the
following quasidistributive rule treating all remaining cases for the signs of
the scalars: for α, β ∈ R and c ∈ Rk

(α+ β) ∗ cσ(α+β) = α ∗ cσ(α) + β ∗ cσ(β). (5)
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Note that the rest of the vector-space laws for multiplication by scalars are
still valid: γ ∗ (a + b) = γ ∗ a + γ ∗ b, α ∗ (β ∗ c) = (αβ) ∗ c, 1 ∗ a = a for
a, b, c ∈ Rk and α, β, γ ∈ R.

Why we are interested in the quasivector multiplication by scalars (3)?
The quasivector multiplication by scalars is order isotone, that is: a ≤ b =⇒
γ ∗a ≤ γ ∗b. This property is of considerable practical importance in interval
arithmetic.

In a canonical quasivector space RkED = (Rk,+,RD, ∗,≤) one can readily
introduce linear multiplication by scalar. Indeed, define in (Rk,+,RD, ∗,≤)
the operation ? : R× Rk −→ Rk:

γ ? (α1, ..., αk) =

{
γ ∗ (α1, ..., αk), if α ≥ 0,
γ ∗ (−α1, ...,−αk), if α < 0.

(6)

We see that the operation “?” is derived from “∗” and opposite and
is inherent for the system. It is easy to see that “?” is in fact the linear
multiplication by scalars “·”. Indeed, for γ ≥ 0 looking at (6) and (3) we
have γ ? (α1, ..., αk) = γ ∗ (α1, ..., αk) = γ · (α1, ..., αk). For γ < 0 we have,
again from (6), (3):

γ ? (α1, ..., αk) = γ ∗ (−α1, ...,−αk) = |γ |(−α1, ...,−αk)
= −γ(−α1, ...,−αk) = γ · (α1, ..., αk),

showing that “?” defined by (6) is the familiar linear multiplication by scalar.

This allows us to look at the system RkED = (Rk,+,RD, ∗,≤) as at the
familiar vector space (Rk,+,RD, ·,≤) possessing one more—quasivector—
multiplication by scalars: RkED = (Rk,+,RD, ·, ∗,≤). It makes sense to to
use both multiplications “·”, “∗” in the same expression, e. g. ab+ b ∗ c.

Consider the direct sum RkD ⊕ RkED. The elements of RkD ⊕ RkED are
denoted a = (a′; a′′), wherein a′, a′′ ∈ Rk.

Addition of a, b ∈ RkD ⊕ RkED is:

a+ b = (a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′)

= (a′1 + b′1, ..., a
′
n + b′n; a′′1 + b′′1, ..., a

′′
n + b′′n). (7)

Multiplication of an element of RkD ⊕ RkED by real scalars is

γ ∗ a = γ ∗ (a′; a′′) = (γa′; |γ|a′′)
= (γa′1, ..., γa

′
n; |γ|a′′1, ..., |γ|a′′n). (8)

We thus arrive to the system (RkD ⊕ RkED,+,RD, ∗).
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2.1.2 The e-multiplication of reals

Consider the following operation for a, b ∈ RD:

a×b =


ab, if a ≥ 0, b ≥ 0,
−ab, if a ≤ 0, b < 0,
0, if a > 0, b < 0 or a < 0, b > 0.

(9)

For example: 2×3 = 6, (−2)×(−3) = −6, −2×3 = 0. To distinguish be-
tween the two operations for multiplication we shall call the familiar opera-
tion “·” linear multiplication, and “×” — e-multiplication. The set R is closed
with respect to (9). Hence we can consider the system RE = (R,+, ×,≤),
having the operation e-multiplication “×” instead of the linear multiplica-
tion “·” together with the same operation “+” and the same order relation
“≤” as in RD.

The e-multiplication (9) is associative:

(a×b)×c = a×(b×c) =

{
abc, if σ(a) = σ(b) = σ(c),
0, otherwise .

(10)

It is also commutative: a×b = b×a. In addition the e-multiplication (9) is
order isotone: a ≤ b =⇒ a×c ≤ b×c. Hence the system (R, ×,≤) is an isotone
commutative semigroup.

Let us comment on some properties of RE and compare them with the
properties of a linearly ordered field RD. Both RE and RD are ordered
additive abelian groups and multiplicative commutative semigroups. The
system RE does not possess an identity (one, unit-element) with respect to
e-multiplication (9). Indeed, 1 is not an identity of RE , for 1×a = 0 6= a
whenever a < 0. The distributive law does not generally hold in RE , indeed,
e. g. (−1+2)×3 = 1×3 = 3, −1×3+2×3 = 0+6 = 6. Hence, RE is not a ring
(without identity). Both arithmetic operations (addition and multiplication)
of the system RE are order (inclusion) isotone, that is: a ≤ b =⇒ a+c ≤ b+c,
a ≤ b =⇒ a×c ≤ b×c. Note that the ordered field RD does not possess the
latter property; namely multiplication is not inclusion isotone, as we have
a ≤ b =⇒ ac ≤ bc only if c ≥ 0. Inclusion isotonicity of multiplication
is practically important in interval arithmetic; in fact this is the reason
to consider the e-multiplication (9). Besides inclusion isotonicity another
nice property of e-multiplication (9) is −(a×b) = (−a)×(−b); note that the
latter does not hold for the linear multiplication. However, again we pay
a price for these nice properties of RE = (R,+, ×,≤): multiplication is
distributive generally just over nonnegative summands: (a+b)×c = a×c+b×c,
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σ(a) = σ(b) = +. This implies that for any a, b, c ∈ RE we have, again
similar to (5):

(a+ b)×cσ(a+b) = a×cσ(a) + b×cσ(b). (11)

Remark. Instead of (9) one can define an inner multiplication by means
of a×′b = |a|b. This multiplication is also isotone and associative, but not
commutative, i. e. (RE , ×′,≤) is an isotone semigroup.

From the system RE = (R,+, ×,≤) one can pass to a familiar ring.
Indeed, one can define in RE the following multiplication:

a · b = aσ(b)×bσ(a) =


a×b, if a ≥ 0, b ≥ 0,
(−a)×b, if a ≥ 0, b < 0,
a×(−b), if a < 0, b ≥ 0,
(−a)×(−b), if a < 0, b < 0.

It can be checked that “·” as defined above is the familiar linear multi-
plication, resp. the system (R,+, ·,≤) is the familiar ordered real field.

As each one of the multiplications “·”, “×” can be defined via the other
one, we shall further assume that the system RE possesses both multiplica-
tions: RE = (R,+, ·, ×,≤); this allows us to use mixed notations in expres-
sions, e. g. a · b+ a×b.

Quasivector and e-multiplication are compatible.In the system
RE = (R,+, ×,≤) one can introduce quasivector multiplication by scalar
(3), that is γ ∗ a = |γ|a. Then one can ask if e-multiplication “×” defined
by (9) and quasivector multiplication by scalars are compatible; indeed we
have:

Proposition 1. The operations e-multiplication “×” defined by (9) and
quasivector multiplication by scalars γ ∗ a = |γ|a are compatible, i. e.
(γ ∗ a)×b = γ ∗ (a×b) holds for all γ ∈ RD, a, b ∈ R.

Thus we obtain a system (R,+, ×,RD, ∗,⊆) which extends both the sys-
tem RE and the system RED = R1

ED = (R,+,RD, ∗,⊆).

Multiplicative identity. There is no multiplicative identity in RE =
(R,+, ×,≤), so there is no point to speak of multiplicative inverse (recipro-
cal) and division in RE . However, there are algebraic constructions allowing
to endow RE with identity. Namely, we can embed RE in the direct sum
RD ⊕ RE of the real field RD and RE ; then there exist various possibilities
to define a product in RD⊕RE . We shall define a product useful for interval
arithmetic in the sequel.

7



2.2 Interval Arithmetic in Midpoint-radius Form

For our purposes we need to briefly outline the arithmetic operations for
intervals represented in midpoint-radius form. In interval arithmetic, like in
the real one, one uses two basic groups of operations:

i) for n-tuples of intervals: addition, subtraction and multiplication by
scalars; and

ii) for one-dimensional intervals: addition, subtraction, multiplication
and division.

The first group of operations leads to vector-space-like systems (mod-
ules), whereas the second one leads to specific ring-like systems (ringoids).
Below we briefly present these two groups of operations/systems. Our pre-
sentation is based on a number of known results about: i) midpoint-radius
form and centred intervals, see e. g. [31], [32], [33], [36], [37], and ii) gener-
alized intervals [4], [8], [38].

One may also mention operations for matrices of intervals: addition,
subtraction, multiplication by scalars and (inner) multiplication; however,
these operations are heavily based on the above mentioned ones.

2.2.1 Vector-space-like interval arithmetic systems

For a′, a′′, x ∈ Rn, a′′ ≥ 0, the point set A = {x ∈ Rn | a′ − a′′ ≤ x ≤ a′ +
a′′} = {x ∈ Rn | |a′ − x| ≤ a′′} is called an (n-dimensional) interval (box) in
Rn. The interval is determined by the two n-tuples a′, a′′ ∈ Rn; hence we can
write A = (a′; a′′), thereby a′ is the midpoint (center) of A and a′′ ≥ 0 is the
radius (error) of A. The set of all n-dimensional intervals in Rn is denoted
I(Rn), n ≥ 1, symbolically I(R) = {(a′; a′′) | a′ ∈ Rn, a′′ ∈ Rn, a′′ ≥ 0}.
If A = (a′; a′′) ∈ I(Rn) and a′ = (a′1, ..., a

′
n) ∈ Rn, a′′ = (a′′1, ..., a

′′
n) ∈

Rn, then we write A = (a′; a′′) = (a′1, ..., a
′
n; a′′1, ..., a

′′
n) ∈ I(Rn). Since

I(Rn) = I(R) × ... × I(R) = (I(R))n, we may also write A = (a′; a′′) =
((a′1; a

′′
1), (a′2; a

′′
2), ..., (a′n; a′′n)), where (a′i; a

′′
i ) ∈ I(R), i = 1, ..., n.

Addition of two intervals A,B ∈ I(Rn) is:

A+B = (a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′)

= (a′1 + b′1, ..., a
′
n + b′n; a′′1 + b′′1, ..., a

′′
n + b′′n). (12)

Multiplication of an n-dimensional interval by real scalars ∗ : R×I(Rn) −→
I(Rn) is defined by

γ ∗A = γ ∗ (a′; a′′) = (γa′; |γ|a′′)
= (γa′1, ..., γa

′
n; |γ|a′′1, ..., |γ|a′′n). (13)
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The operator negation ¬ : I(Rn) −→ I(Rn) is

¬A = (−1) ∗A = (−a′; a′′) = (−a′1, ...,−a′n; a′′1, ..., a
′′
n).

Subtraction is a composition of addition and negation, for A,B ∈ I(Rn):

A ¬ B = A+ (¬B) = (a′; a′′) + (−b′; b′′) = (a′ − b′; a′′ + b′′)

= (a′1 − b′1, ..., a′n − b′n; a′′1 + b′′1, ..., a
′′
n + b′′n). (14)

Centred intervals. Using interval addition (12) any interval (a′; a′′)
can be written as a sum (a′; a′′) = (a′; 0) + (0; a′′) of a degenerated (point)
interval (a′; 0) and a centred (origin symmetric) interval of the form (0; a′′).
Clearly, degenerated (point) intervals can be identified with real vectors,
hence systems of point intervals are isomorphic to familiar systems of real
vectors (or numbers in the one-dimensional case), such as vector spaces and
rings. We stop our attention to the set of all centred intervals IS(Rn) =
{(0; a′′) | a′′ ∈ (R+)n}. Substituting a′ = 0 in (12), (13), we obtain the fol-
lowing expressions for these operation whith regard to centred n-dimensional
intervals A = (0; a′′), B = (0; b′′) ∈ IS(Rn):

A+B = (0; a′′ + b′′) = (0; a′′1 + b′′1, ..., a
′′
n + b′′n), (15)

γ ∗A = (0; |γ|a′′) = (0; |γ|a′′1, ..., |γ|a′′n). (16)

Clearly, centred n-dimensional intervals A = (0; a′′) can be identified
with n-tuples of nonnegative reals a′′ ∈ (R+)n. Hence, the study of the set
of all centred n-dimensional intervals A = (0; a′′), a′′ ≥ 0, with operations
(15), (16) is reduced to the study of the system ((R+)n,+,RD, ∗), with
operations (1), (3).

Generalized (Kaucher) centred intervals. It is natural to embed the
system ((R+)k,+,RD, ∗) in the canonical quasivector space (Rk,+,RD, ∗)
considered in Section 2.1.1. Consider now the set of generalized centred
intervals IS(Rk) = {(0; a′′) | a′′ ∈ Rk} with operations (15), (16). Clearly,
we have:

Proposition 2. The system of generalized centred intervals (IS(Rk),+,RD, ∗)
is isomorphic to (Rk,+,RD, ∗).

Generalized (Kaucher) intervals. Consider the direct sum of the vec-
tor space (Rk,+,RD, ·) and the canonical quasivector space (Rk,+,RD, ∗).
The elements of (Rk,+,RD, ·) ⊕ (Rk,+,RD, ∗) are 2k-tuples, of the form
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(λ1, ..., λk; µ1, ..., µk); they can be identified with generalized intervals, thereby
(λ1, ..., µk) is interpreted as a midpoint and (λ1, ..., µk) — as a radius (error).
Denote the set of all generalized (Kaucher) intervals by I(Rk) = {(a′; a′′) |
a′, a′′ ∈ Rk}.

Addition and multiplication by scalars in the direct sum (Rk,+,RD, ·)⊕
(Rk,+,RD, ∗) are defined as usually, that is, formulae (12)–(13) retain the
same form, just the restriction for nonnegativity of the error components is
dropped.

Proposition 3. The generalized interval arithmetic system (I(Rk),+,RD, ∗)
is isomorphic to the direct sum of the systems (Rk,+,RD, ·) and (Rk,+,RD, ∗),
symbolically (I(Rk),+,RD, ∗) ∼= (Rk,+,RD, ·)⊕ (Rk,+,RD, ∗).

2.2.2 Ring-like interval arithmetic systems

Addition of two one-dimensional intervals A,B ∈ I(R) is a special case of
(12):

A+B = (a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′). (17)

(Inner) multiplication (sometimes called set-theoretic multiplication) is
defined for two one-dimensional intervals A,B ∈ I(R) by the expression:
A×B = {c | c = ab, a ∈ A, b ∈ B}. To present it in midpoint-radius form
[10], [15], [16], [33] denote A = (a′; a′′), B = (b′; b′′) ∈ I(R) then the product
P = A×B is defined by

P =


(a′b′ + sign(a′b′)a′′b′′; |a′|b′′ + |b′|a′′), if κ(A) ≤ 1, κ(B) ≤ 1;
σ(b′)|B| ∗ (a′; a′′), if C(A,B);
σ(a′)|A| ∗ (b′; b′′), if C(B,A).

(18)

where |A| = |a′| + a′′ and the functional κ is defined for A = (a′; a′′) ∈
I(R), a′ 6= 0 by [10]:

κ(A) = a′′/|a′|, a′ 6= 0. (19)

Condition C(A,B), resp. C(B,A), comprises the cases when the interval
A, resp. B, contains zero:

C(A,B)⇐⇒ κ(A) > 1 and κ(A) ≥ κ(B) or a′ = 0.

Note that in these cases multiplication of two intervals reduces to (the
simpler) multiplication by scalars. The symbol ”∗” in (18) means multi-
plication by scalars as in (13) in the one-dimensional case, that is γ ∗ A =
γ ∗ (a′; a′′) = (γa′; |γ|a′′).
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Let us also mention one more definition for multiplication of one-dimensional
intervals. The centered outer multiplication (co-multiplication) in midpoint-
radius form is defined for A,B ∈ I(R) as follows:

A◦B = (a′; a′′)◦(b′; b′′) = (a′b′; |a′|b′′ + |b′|a′′ + a′′b′′), (20)

cf. e. g. [5], [10], [15], [16], [31], [32], [33], [36].

We have A×B ⊆ A◦B, A,B ∈ I(R). For a comparative study of the two
multiplications (18), (20), see [10], [32]. The multiplication (20) has some
shortcomings in comparison to (18); as shown in [16] (20) is not inverse
inclusion isotone whereas (18) is.

Further: We shall also show that the generalized centred multiplication
is not associative, whereas the generalized multiplication based on (18) is,
cf. [7].

For real numbers we use the familiar preceding order “≤”, arriving thus
to the ordered real field (R,+, ·,≤). In the case of intervals (at least) three
order relations are practically important, we mention the following ones:

The inclusion relation “⊆” defined by

A ⊆ B ⇐⇒| b′ − a′ |≤ b′′ − a′′ (21)

plays substantial roles in the algebraic constructions.

The preceding relation “�” is defined by

A � B ⇐⇒ |a′′ − b′′| ≤ b′ − a′. (22)

We shall also make use of the component-wise order relation

A ≤ B ⇐⇒ a′ ≤ b′ and a′′ ≤ b′′. (23)

Centred intervals. Substituting a′ = 0 in (17)–(21), we obtain formu-
lae for one-dimensional centred intervals A = (0; a′′), B = (0; b′′) ∈ I(R):

A+B = (0; a′′ + b′′), (24)

A×B = A◦B = (0; a′′b′′), (25)

A ⊆ B ⇐⇒ a′′ ≤ b′′. (26)

Generalized (Kaucher) centred intervals. As before we start from
the abelian group (IS(R),+) of generalized centred intervals with addition,
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this time restricting ourselves to one-dimensional intervals. Recall that the
system (IS(R),+) is isomorphic to (R,+).

We now want to involve multiplication, to this end we need to extend
(25) for generalized (Kaucher) centred intervals. Consider the following
operation for (0; a′′), (0; b′′) ∈ IS(R):

(0; a′′)×(0; b′′) = (0; a′′×b′′), (27)

where a′′×b′′ is given by (9). For example: (0; 2)×(0; 3) = (0; 6), (0;−2)×(0; 3) =
(0; 0), (0;−2)×(0;−3) = (0;−6). In end-point notation: [−2, 2]×[−3, 3] =
[−6, 6], [2,−2]×[−3, 3] = [0, 0], [2,−2]×[3,−3] = [6,−6].

Consider the system RE = (R,+, ×,≤), where “× ” is defined by (9)
and addition and order are as usual . The next Proposition gives a relation
between RE and the system (IS(R),+, ×,⊆) of generalized centred intervals,
cf. [4], [6], [8], [23].

Proposition 4. The system RE = (R,+, ×,≤) is isomorphic to the system
(IS(R),+, ×,⊆) of generalized centred intervals on the real line.

Proof. Generalized centred intervals (0; r) ∼ [−r, r], r ∈ R, are elements
of the group extension of the monoid of (proper) centred intervals. They are
represented by real numbers r ∈ R, and for r ≥ 0 are interpreted as radii
of the centred intervals. The product of two generalized centred intervals of
the form (0; a), (0; b) according to (27) is (0; a×b), where a×b is given by (9);
thereby relation “≤” corresponds to inclusion. �

Inclusion of generalized centred intervals is defined by means of (26) after
dropping the restriction a′′ ≥ 0, b′′ ≥ 0. For example: (0;−3) ⊆ (0;−1) ⊆
(0; 0) ⊆ (0; 1); in end-point form: [3,−3] ⊆ [1,−1] ⊆ [0, 0] ⊆ [−1, 1]. This
order corresponds to the natural order in the set of reals.

Multiplication (27) of generalized centred intervals based on (9) is inclu-
sion isotone, that is, for any a, b, c ∈ R

(0; a) ⊆ (0; b) =⇒ (0; c)×(0; a) ⊆ (0; c)×(0; b).

In end-point notation we can write:

[−a, a] ⊆ [−b, b] =⇒ [−c, c]×[−a, a] ⊆ [−c, c]×[−b, b].

Generalized (Kaucher) intervals.

12



==================
Denote |a| = |a′| + |a′′|. The functional κ : I(R) −→ R is defined for

a = (a′; a′′) ∈ I(R) with a′ 6= 0 by:

κ(a) =

{
|a′′|/|a′|, if a′ 6= 0,
∞, if a′ = 0.

(28)

Using κ we can write the condition |a′′| ≤ |a′| (meaning that the interval
a = (a′; a′′) does not contain zero as interior point) in the form κ(a) ≤ 1.

There is no multiplicative identity in RE = (R,+, ×,≤), so there is no
point to speak of multiplicative inverse (reciprocal) and division in RE . How-
ever, there are algebraic constructions allowing to endow RE with identity.
Namely, we shall embed RE in the direct sum RD ⊕ RE of the real field
RD and RE thereby introducing the product p = a×b for a = (a′; a′′), b =
(b′; b′′) ∈ RD ⊕ RE by means of:

p =


(a′b′ + sign(a′b′)a′′b′′; |a′|b′′ + |b′|a′′), if κ(a) ≤ 1, κ(b) ≤ 1;
σ(b′)|b| ∗ a, if Cond(a, b) holds true ;
σ(a′)|a| ∗ b, if Cond(b, a) holds true ;
(0; 0), if σ(a′′) 6= σ(b′′), κ(a) > 1, κ(b) > 1,

(29)

wherein condition Cond(a, b) is

Cond(a, b)⇐⇒ σ(a′′) = σ(b′′), κ(a) > 1 and κ(a) ≥ κ(b).

Multiplication (29) has been introduced in by E. Kaucher [8]. The end-
point form used by Kaucher is equivalent to our midpoint-radius form (29),
see Appendix 1. Note that in the case when some of the conditions κ(a) ≤
1, κ(b) ≤ 1 is violated (that is, some of the intervals contain zero), the
product p = a×b reduces to multiplication by scalars, or is equal to zero.

Proposition 5. The system RD⊕RE has a multiplicative identity 1 = (1; 0)
with respect to the e-multiplication “×” defined by (29). Moreover, every
element a = (a′; a′′) ∈ RD ⊕ RED, such that a′ 6= 0, has a multiplicative
inverse (reciprocal) a−1 = (1/a′; (−a′′)/|a′|2).

Further, one can introduce quasivector multiplication by scalar in RD ⊕
RE by γ ∗ (a′; a′′) = (γa′; |γ|a′′).

The system RD ⊕ RE reflects many properties of approximate numbers
(intervals on the real line).

Formula (29) is not the unique possibility to introduce identity. Another
possible way to define the product of (a′; a′′), (b′; b′′) ∈ RD ⊕ RE is:

(a′; a′′)◦(b′; b′′) = (a′b′; |a′|b′′ + |b′|a′′ + a′′b′′). (30)
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It is easy to see that (30) also introduces an identity in RD ⊕RE . How-
ever, (29) is associative and inverse inclusion monotone, whereas (30) is not.
This properties will be derived in Section 4.

One can consider m×n-matrices of elements of RD⊕RE by introducing
corresponding matrix operations as done for matrices of real numbers.

==================
E. Kaucher gives formulae for multiplication (in end-point form) that

extend (18) for generalized intervals (no restriction a′′ ≥ 0, b′′ ≥ 0) [7].
His formulae for the product p = a×b = (a′; a′′)×(b′; b′′) of two generalized
(not necessarily centred) intervals a = (a′; a′′), b = (b′; b′′) ∈ I(R) can be
presented in midpoint-radius form as follows:

p =


(a′b′ + sign(a′b′)a′′b′′; |a′|b′′ + |b′|a′′), if κ(a) ≤ 1, κ(b) ≤ 1;
σ(b′)|b| ∗ (a′; a′′), if Cond(a, b);
σ(a′)|a| ∗ (b′; b′′), if Cond(b, a);
(0; 0), if σ(a′′) 6= σ(b′′), κ(a) > 1, κ(b) > 1,

(31)

where |a| = |a′|+ |a′′|, κ is defined for a = (a′; a′′) ∈ I(R) with a′ 6= 0 by:

κ(a) = |a′′|/|a′|, a′ 6= 0. (32)

and condition Cond(a, b) in (31) is

Cond(a, b)⇐⇒ σ(a′′) = σ(b′′), κ(a) > 1 and κ(a) ≥ κ(b) or a′ = 0.

The above condition corresponds to cases when a (and b) contain (is
contained in) zero. In these cases multiplication reduces to multiplication
by scalars.

With the help of the hyperbolic product [7]:

a · b = (a′b′ + a′′b′′, a′b′′ + a′′b′)

the first line in formula (31) can be written:

p = a×b = aτ(b) · bτ(a), if κ(a) ≤ 1, κ(b) ≤ 1,

where τ(a) = σ(a′′).

An extension of (20): (a′; a′′)◦(b′; b′′) = (a′b′; |a′|b′′ + |b′|a′′ + a′′b′′) for
(a′; a′′), (b′; b′′) ∈ I(R) is given by:

(a′; a′′)◦(b′; b′′) =

{
(0; 0), σ(a′′) 6= σ(b′′), κ(a) > 1, κ(b) > 1;
(a′b′; |a′|b′′ + |b′|a′′ + a′′×b′′), otherwise .

(33)
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Inclusion of generalized intervals is defined by means of (21) after drop-
ping the restriction a′′ ≥ 0, b′′ ≥ 0, namely

(a′; a′′) ⊆ (b′; b′′)⇐⇒| b′ − a′ |≤ b′′ − a′′. (34)

Multiplication (31) inclusion isotone. We have (a′; a′′)×(b′; b′′) ⊆ (a′; a′′)◦(b′; b′′).

.

.

Proposition 6. The system RED = (R,+, ×,RD, ∗,⊆) is isomorphic to the
system (IS(R),+, ×,RD, ∗,⊆).

Proposition 7. The system RD⊕RED is isomorphic to the system (I(R),+, ×,RD, ∗,⊆
) with multiplication “×” defined by (33) and multiplication by scalars γ∗a =
|γ|a.

We notice that the operation (33) coincides with (30). This shows the
advantage of multiplication (33) being more simple than (31) from algebraic
point of view.

Clearly, everything said for the interval-arithmetic system (I(R),+, ×,⊆)
can be re-formulated for the system (I(Rm×n),+, ×,⊆) of interval matrices
under a suitable definition of matrix operations—analogously to the case
with real numbers.

Our next aim is to put generalized interval arithmetic systems like (I(Rk),+,RD, ∗),
(I(R),+, ×,⊆), (I(R),+, ×,RD, ∗,⊆), (I(Rm×n),+, ×,⊆) on an axiomatic foun-
dation.

3 Quasivector Spaces

3.1 Quasivector Spaces: Definition

Definition 1. A quasivector space (over the l. o. field RD = (R,+, ·,≤)),
denoted (Q,+,RD, ∗), is an abelian group (Q,+) with a mapping (multipli-
cation by scalars) “∗”: R×Q −→ Q, such that for a, b, c ∈ Q, α, β, γ ∈ R:

γ ∗ (a+ b) = γ ∗ a+ γ ∗ b, (35)

α ∗ (β ∗ c) = (αβ) ∗ c, (36)

1 ∗ a = a, (37)

(α+ β) ∗ c = α ∗ c+ β ∗ c, if αβ ≥ 0. (38)
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Conjugate elements. Denote ¬a = (−1)∗a. By definition quasivector
spaces are groups, hence the existence of opposite elements opp(a) is as-
sumed. From a+ opp(a) = 0 we obtain ¬opp(a) ¬ a = 0, that is ¬opp(a) =
opp(¬a). The element ¬opp(a) = opp(¬a) is further denoted by a− and the
corresponding operator is called dualization or conjugation. We say that a−
is the conjugate (or dual) of a. Relations ¬opp(a) = opp(¬a) = a− imply
opp(a) = ¬(a−) = (¬a)−, which is denoted opp(a) = ¬a−.

Remark. Note that in Definition 1 we do not assume ¬a = a and
hence opp(a) = a− may not hold true in a general quasivector space (as was
the case with the space (Rk,+,RD, ∗), resp. (IS(Rk),+,RD, ∗) wherein the
relation ¬a = a holds for all elements a).

The quasidistributive law. Rules for calculation in quasivector spaces
are derived in [12], [13], [18]. Here we shall pay attention to the quasidis-
trivitive law. The condition αβ ≥ 0 in (38) creates the false impression that
there may be some freedom in the form of the distributivity relation for
αβ < 0. The following result shows that this is not the case: it turns out
that (38) determines a specific relation for all α, β ∈ R.

Proposition 8. Let (Q,+,R, ∗) be a quasivector space over R. For α, β ∈ R
and c ∈ Q we have:

(α+ β) ∗ cσ(α+β) = α ∗ cσ(α) + β ∗ cσ(β). (39)

Definition 2. Q is a quasivector space. An element a ∈ Q with a ¬ a = 0
is called linear. An element a ∈ Q with ¬a = a is called origin symmetric
or centred.

Note that the relation a ¬ a = 0 is equivalent to a = a−, and the relation
¬a = a is equivalent to a + a− = 0. The latter means that, if a is centred,
then opp(a) = a−. For any a the element a+ a− is linear.

Subspaces, sum and direct sum of quasivector spaces are defined as in
vector spaces. It can be checked that in a quasivector space Q the subset of
all linear elements Q′ = {a ∈ Q | a ¬ a = 0} forms a subspace of Q; so does
the the subset of all centred elements Q′′ = {a ∈ Q | a = ¬a}.

Proposition 9. Assume that Q is a quasivector space. The subspace Q′ =
{a ∈ Q | a ¬ a = 0} is a vector space.

Indeed, we only have to check that relation (38) becomes true for all
values of the scalars. However, this is obvious from (39) as linear elements
satisfy c = c−.
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Definition 3. Assume that Q is a quasivector space. The space Q′ = {a ∈
Q | a ¬ a = 0} is called the linear subspace of Q and the space Q′′ = {a ∈
Q | a = ¬a} is called the centred (quasivector) subspace of Q.

Theorem 1. (Decomposition theorem) Every quasivector space Q is a
direct sum of its linear and centred subspaces, i. e. Q = Q′ ⊕ Q′′. More
specifically, for every x ∈ Q we have x = x′ + x′′ with unique x′ = (1/2) ∗
(x+ x−) ∈ Q′, and x′′ = (1/2) ∗ (x ¬ x) ∈ Q′′.

Proof. Assume x ∈ Q. Using that x− ¬ x = 0 we have

x′ + x′′ = (1/2) ∗ (x+ x−) + (1/2) ∗ (x ¬ x)

= (1/2) ∗ (x+ x+ x− ¬ x) = x.

On the other side we have x′ = (1/2) ∗ (x + x−) ∈ Q′ and x′′ = (1/2) ∗
(x ¬ x) ∈ Q′′. Hence, Q = Q′ + Q′′. Furthermore, Q′ ∩ Q′′ = 0. Indeed,
assume x ∈ Q′ and x ∈ Q′′. Then we have simultaneously x ¬ x = 0 and
x = ¬x, implying x = 0. Hence Q = Q′ ⊕Q′′. �

Theorem 1 states that every element x ∈ Q can be decomposed in a
unique way as x′ + x′′, where x′ is an element of a vector space and x′′

belongs to a centred quasivector space. We call x′ the linear component of
x, and x′′ — the centred component of x, and write x = (x′;x′′).

Theorem 1 shows that the midpoint-radius form is the natural form for
algebraic point of view. This is the reason to use it for the presentation of
interval arithmetic in Section 2. Let us mention that there exist also other
purely practical motivations in favor to midpoint-radius form [32], [35].

Theorem 2. Let (Q,+,R, ∗) be a quasivector space over R. Then (Q,+,R, ·),
with “·”: R×Q −→ Q defined for α ∈ R, c ∈ Q by

α · c = α ∗ cσ(α) =

{
α ∗ c, if α ≥ 0,
α ∗ c−, if α < 0,

(40)

is a vector space over R.

Relation (40) shows that the linear multiplication “·” is an inherent
operation for every quasilinear space (not necessarily centred); although it
is not explicitly included in the notation (Q,+,R, ∗), it is present there
in the same way as the operators opposite, negation and conjugation are
present.
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The question arises: is it possible to represent all quasilinear operations
and expressions in a quasivector space by means of linear operations?

The answer to the above question is generally “no”, that is, we cannot
generally represent in linear terms the quasivector multiplication by scalars.
Indeed, from (40) we have

α ∗ c = α · cσ(α) =

{
α · c, if α ≥ 0,
α · c−, if α < 0.

(41)

Relation (41) shows that the quasivector expression α ∗ c is presented
as α · cσ(α) using the linear multiplication and the operator conjugation.
Clearly, the “quasivector” operations “∗”, “¬” and “c−” cannot be generally
represented by means of linear operations. However, in what follows we are
going to show that such a representation does exist in the special case of
centred quasivector spaces.

3.2 Centred Quasivector Spaces and E-linear spaces

Theorem 1 states that every quasivector space is a direct sum of a vector
space and a centred quasivector space. As vector spaces are well-known, we
need to study centred quasivector spaces.

A centred quasivector space S can be defined axiomatically as an abelian
group with multiplication by scalars (from a l. o. field) satisfying (35)–(38)
together with the additional assumption: ¬a = a for all a ∈ S. Starting
from this axiomatic definition one can develop the theory of centred qua-
sivector spaces following step by step the development of the theory of vector
spaces. This approach has been exploited in [12]. We now concentrate on
the relations between quasivector and linear multiplication by scalars; then
the properties of centred quasivector spaces become transparent.

The centred case. In a centred quasivector space, due to (−1) ∗ c = c,
we have: α∗c = (−α)∗c = |α| ∗c. Hence formula (40) for the induced linear
multiplication in a centred quasivector space can be written as

α · c = |α| ∗ cσ(α). (42)

Recall the relation opp(c) = c−, which is true for centred elements and
not true in a general quasivector space. This relation shows that, in the case
of centred quasivector space, the operation conjugation can be presented by
the linear operation “opposite”. Substituting c− = opp(c) in (41) gives

α ∗ c = |α| · c. (43)
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Relation (43) shows that in a centred quasivector space the quasivector mul-
tiplication “∗” is representable by the linear multiplication and the function
modulus. In particular, negation is representable by linear operations, due
to ¬c = c. (Note that the above is not true in a general quasivector space,
but is true in a centred quasivector space.) We thus obtain the following
special case of Theorem 2:

Corollary 1. Let (S,+,R, ∗) be a centred quasivector space over R.
The induced vector space (S,+,R, ·), with “·” defined by (42), due to c− =
opp(c), involves implicitly quasilinear multiplication by scalars, and hence
all (quasivector) operations/expressions in (S,+,R, ∗) can be presented by
linear ones.

Corollary 2. Every vector space over a l. o. field R induces via (43) a
centred quasivector space.

Thus to every vector space over a l. o. field (G,+,R, ·), we associate
the centred quasivector space (G,+,R, ∗) with “∗” defined by (43). The two
spaces — (Q,+,R, ∗) and (Q,+,R, ·) — differ from each other by having
different operations for multiplication by scalars.

To summarize: Every centred quasivector space over R generates via (42)
a linear multiplication by scalars and hence a vector space. Vice versa, every
vector space over R induces via (43) a quasilinear multiplication by scalars
and thus a centred quasivector space.

Let (S,+,R, ∗) be a centred quasivector space and (S,+,R, ·) be the
associated vector space. It follows from the above, that all concepts char-
acteristic for the vector space (S,+,R, ·), such as linear combination, linear
dependence, basis etc., can be represented in terms of the original centred
quasivector space (S,+,R, ∗). We thus feel free to use any vector space
concepts in the centred quasivector space.

As every quasivector space Q is a direct sum Q = V ⊕ S of a vector
space V and a centred quasivector space S, we can speak of basis and di-
mension of Q, whenever V and S have finite bases. Namely, let V = Vl be
a l-dimensional vector space with a basis (v(1), ..., v(l)) and let S = Sk be a
k-dimensional centred quasivector space having a basis (s(1), ..., s(k)). Then
we say that (v(1), ..., v(l); s(1), ..., s(k)) is a basis of the (l, k)-dimensional qua-
sivector space Q = Vl ⊕ Sk. In interval arithmetic we usually have l = k as
in the following proposition.

Proposition 10. The Kaucher interval arithmetic system (I(Rk),+,RD, ∗) ∼=
(Rk,+,R, ·)⊕ (Rk,+,R, ∗) is a quasivector space.
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Definition 4. An e-linear space over the real l. o. field RD is a system
(S,+,RD, ∗,⊆) with the following properties: 1. (S,⊆) is a (partially) or-
dered set; 2. (S,+,RD, ∗) is a quasivector space over the l. o. field RD, and
3. addition “+” and multiplication by scalars “∗” are order isotone, that is
for a, b, c ∈ S and γ ∈ RD: a ⊆ b =⇒ a+ c ⊆ b+ c and γ ∗ a ⊆ γ ∗ b.

Briefly, an e-linear space is a partially ordered quasivector space.

Proposition 11. The Kaucher centred interval arithmetic system (IS(Rk),+,RD, ∗,⊆
) is an e-linear space.

Proposition 12. The Kaucher interval arithmetic system (I(Rk),+,RD, ∗,⊆
) is an e-linear space.

Remark. Similar propositions hold for the set I(Rm×n) of interval ma-
trices.
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3.3 E-rings

We defined the systems RE = (R,+, ×,⊆), RED = (R,+, ×,RD, ∗,⊆), (RD⊕
RED,+, ×), etc. by means of the real field RD. Our next aim is to define
these systems axiomatically and independently on the definition of RD.

3.3.1 Axiomatic definition of e-ring

Definition 5. An e-ring is a system (S,+, ×,v), such that:

A1. (S,v) is an ordered set (a poset);

A2. (S,+,v) is an isotone abelian group (with null 0);

A3. Multiplication “×” in (S,+, ×,v) is order isotone and distributive over
a sum of any two proper elements (elements that w 0).

Recall that the familiar ordered field of reals RD = (R,+, ·,≤) is a (lin-
early) ordered ring. Indeed, RD satisfies assumptions A1. and A2. Concern-
ing assumption A3., (R, ·,≤) is a commutative semigroup,and multiplication
“·” is distributive over the sum of any two elements. But (R, ·,≤) is not iso-
tone, that is a ≤ b =⇒ ac ≤ bc does not generally hold (for all a, b, c).
In contrast S assumed to be isotone. We show in the sequel that the lack
of distributivity in S is not a substantial drawback, by deriving a specific
distributive-like relation in S.

For more clarity let us write down the assumptions of an e-ring in detail.
The null in the additive group (S,+) is denoted as usually by 0; the opposite
element to a ∈ S is denoted symbolically by opp(a) or −a. (However, the
symbol “−” should be used carefully. In interval and convex analysis this
symbol is used to denote multiplication by the scalar −1, which is generally
different from opposite.)

Using these notations, according to Definition 5, a system (S,+, ×,v) is
an e-ring if the following 10 axioms (classified in three groups) hold:

A1. (S,v) is partially ordered, i. e. for all a, b, c ∈ S:

A1.1. a v a,

A1.2. a v b, b v a =⇒ a = b,

A1.3. a v b, b v c =⇒ a v c;
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A2. (S,+,v) is an isotone abelian group with null 0 and opposite opp(a),
i. e. for all a, b, c ∈ S:

A2.1. (a+ b) + c = a+ (b+ c),

A2.2. a+ b = b+ a,

A2.3. a+ 0 = a,

A2.4. a+ opp(a) = 0,

A2.5. a v b =⇒ a+ c v b+ c;

A3. Multiplication “×” in (S,+, ×,v) is order isotone and distributive over
a sum of any two proper elements, i. e. for all a, b, c ∈ S:

A3.1. a v b =⇒ a×c v b×c;
A3.2. (a+ b)×c = a×c+ b×c, whenever 0 v a, b.

We shall consider three more additional axioms:

A1.4. For any a, b either a v b or b v a holds true;

A3.3. For any a, b relation a×b = b×a holds true;

A3.4. For any a, b, c relation a×(b×c) = (a×b)×c holds true.

Definition 6. An e-ring, satisfying A1.4., is called linearly ordered. An
e-ring, satisfying A3.3., is called commutative. An e-ring, satisfying A3.4.,
is called associative. An e-ring S is an e-ring with identity if there is an
element e in S such that a×e = e×a = a for all a ∈ S.

If there is an identity, it is clearly unique, and will be denoted, as usually,
by 1. Further, as with familiar rings, if the e-ring is not the null one (that
is consists only of the null element 0), then 1 6= 0.

Definition 7. Let S be an e-ring. If a 6= 0, b 6= 0 are elements of S such that
a×b = 0, then a is called left zero divisor and b is called right zero divisor.

The following theorem gives an example of an e-ring.

Theorem 3. The systems RE = (R,+, ×,≤) ∼= (IS(R),+, ×,⊆) of errors,
resp. generalized symmetric intervals, with multiplication (9) are linearly
ordered, commutative and associative e-rings without identity with all their
elements being zero divisors.

The verification of Theorem 3 is straightforward. Theorem 3 gives an
algebraic characterization of the system of generalized centred intervals on
the real line.
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3.3.2 Properties of the e-ring

We next derive some properties of the e-ring (S,+, ×,v). The following fa-
miliar relations P1.1–P1.9 take place in any isotone additive group (S,+,⊆);
as usually “a ⊂ b” means “a ⊆ b and a 6= b”.

P1.1. a+ c = b+ c =⇒ a = b;
P1.2. a @ b =⇒ a+ c @ b+ c;
P1.3. a+ c v b+ c =⇒ a v b;
P1.4. a+ opp(a) = 0;
P1.5. opp(0) = 0;
P1.6. opp(opp(a)) = a;
P1.7. opp(a+ b) = opp(a) + opp(b);
P1.8. a v b, c v d =⇒ a + c v b + d. (Indeed, a + c v b + c v b + d).

As a corollary we obtain: a ⊆ 0, b v 0 =⇒ a + b v 0, resp. 0 v a,
0 v b =⇒ 0 v a+ b.

P1.9. a ⊂ 0 =⇒ 0 ⊂ opp(a); 0 ⊂ a =⇒ opp(a) ⊂ 0. (Indeed, from
a ⊂ 0, adding opp(a) to both sides we obtain: a + opp(a) ⊂ 0 + opp(a), i.
e. 0 ⊂ opp(a).) More generally, a ⊆ b⇐⇒ opp(b) ⊆ opp(a).

We next deduce consequences from axioms A3.

The following properties P2.1–P2.4 hold in any isotone (multiplicative)
semigroup (groupoid?) (S, ×,v):

P2.1. a v b, c v d =⇒ a×c v b×d.

Proof. Using A3.2. twice we obtain a×c v b×c v b×d. As a special case
we obtain:

P2.2. a v 0, b v 0 =⇒ a×b v 0, resp. 0 v a, 0 v b =⇒ 0 v a×b.

P2.3. a×c = b×c, 0 v a, b, 0 @ c =⇒ a = b.

P2.4. a×c v b×c, 0 v a, b, 0 @ c =⇒ a v b.

P2.5. 0×c = c×0 = 0.

Proof. We have 0 + 0 = 0. Using assumption A3.2 we have (0 + 0)×c =
0×c+ 0×c, or 0×c = 0×c+ 0×c, implying 0×c = 0. Relation c×0 = 0 is proved
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similarly.

P2.6. a v 0 v b =⇒ a×b = 0.

Proof. Assume a v 0 v b. Using assumption A3.2. and P2.5. we obtain:
i) a v 0 =⇒ a×b v 0×b = 0, and ii) 0 v b =⇒ 0 = 0×a v a×b. Thus we have
simultaneously the inclusions a×b v 0 and 0 v a×b, implying (by A1.2.)
a×b = 0.

As a particular case of P2.6. we obtain (using P1.8):

P2.7. a×opp(a) = 0. In particular, 0×0 = 0×opp(0) = 0.

Remark. A possible approach to the study of an e-ring could be to start
with an axiomatic definition based on the two operations (addition and
multiplication) without the order relation. To this end one can use axioms
A2.1., A2.2., A2.3., A2.4., A3.1., A3.3., A4.1., and, additionally properties
P2.5 and P2.7 (postulated as axioms). Such a system would be the coun-
terpart of a familiar ring (without an order). Also, one can generalize the
definition of an e-ring to the noncommutative case in order to include the
case of matrices of errors, by dropping assumption A3.3 related to commu-
tativity.

We now introduce one more symbolic notation. We shall write a+ = a,
so that the symbol aλ makes sense for λ ∈ Λ = {+,−}. In the set Λ we
introduce a “product” by means of ++ = −− = +, +− = −+ = −.

Up to the end of the section we denote a− = opp(a).

Up to the end of the subsection we denote a− = opp(a).
Denote by S+ = {a ∈ S | a ⊇ 0}, S− = S \ S+, the sets of proper,

resp. improper elements of S; the set S+ \ {0} comprises the strictly proper
elements of S. We thus read a ∈ S+ as “a is proper element of S”, etc. Any
element of S is either proper or improper. Using the sets S+ and S− the
condition “a, b ⊇ 0” of assumption A3.2 can be written as “a, b ∈ S+”.

We introduce a function τ : S −→ Λ = {+,−} (type, direction, orienta-
tion of an element of S) by

τ(a) =

{
+, a ∈ S+,
−, a ∈ S−.

(44)
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Clearly τ(a) = τ(b), if a, b ∈ S+ or a, b ∈ S−”.
(The function τ is similar to the function σ, but τ is defined in an e-ring

whereas σ is defined in a ring—the field of reals.)

Theorem 4. (Quasidistributive law in an e-ring) For any a, b, c from an
e-ring we have:

(a+ b)×cτ(a+b) = a×cτ(a) + b×cτ(b). (45)

Proof. Consider the case τ(a) = τ(b). In the subcase τ(a) = τ(b) = +
we have τ(a + b) = + and (45) is true for τ(c) = + by assumption A4.2.;
for τ(c) = − all products are equal to zero (according to P3.3.) so that (45)
holds. In the subcase τ(a) = τ(b) = − we have τ(a + b) = −. If τ(c) = −
then the validity of (45) follows from the case τ(a) = τ(b) = τ(c) = + after
dualizing the relation (a + b)×c = a×c + b×c and applying A4.1, P1.7 to
obtain (a−+ b−)×c− = a−×c−+ b−×c−. For τ(c) = + all products are equal
to zero (according to P3.3.) so that (45) holds.

Consider now the case τ(a) = −τ(b). Assume that 0 ⊆ a, b ⊆ 0 and
0 ⊆ b− ⊆ a. In this subcase we have 0 ⊆ a + b and we can write (using
A4.2.)

((a+ b) + b−)×c+ b×c− = (a+ b)×c+ b−×c+ b×c− = (a+ b)×c,

so that (45) is proved in this subcase (in the last equality we use property
P3.1.). The remaining subcases are verified similarly. �

Corollary. We have (a+ b)×c = a×c+ b×c, if a, b, c ⊇ 0 or a, b, c ⊆ 0.

“Conjugating” both sides of (45) by τ(a+ b) we obtain

(a+ b)×c = a×cτ(a)τ(a+b) + b×cτ(b)τ(a+b). (46)

The identity (46) shows, that the quasidistributive law permits opening
brackets in expressions of the form (a + b)×c similarly to opening brackets
in a ring.

Property. i) (a×b)− = a−×b−, or opp(a×b) = opp(a)× opp(b)
ii) (a×b−)− = a−×b
Proof. Using (45) we can write:

0 = aτ(b+b−)×(b+ b−) = aτ(b)×b+ aτ(b−)×b−. (44)

Assume 0 ⊆ b, then the above yields 0 = a×b+ a−×b−. This means that
a−×b− is the opposite to a×b, i. e. (a×b)− = a−×b−.

Assume now b ⊆ 0, then (44) yields 0 = a−×b+ a×b−. This means that
a×b− is the opposite to a−×b, i. e. (a×b−)− = a−×b.

25



3.3.3 Relation between a l. o. ring and an e-ring

Formula (9) defines e-multiplication in a l. o. ring by the familiar linear
multiplication. Similarly, we can define linear multiplication in an e-ring

a · b = aτ(b)×bτ(a), (47)

where τ is defined by (44).

Theorem 5. Every l. o. ring (l. o. field) generates via (9) a unique (up to
isomorphism) e-ring and vice versa, every e-ring induces via (47) a unique
ring.

Proof. Let (S,+, ·,≤) be a linearly ordered ring. Define a multiplication
“×” for elements of S by (9). We have to show that (S,+, ×,⊆) with ⊆
same as ≤ (and τ same as σ) is an e-ring. We prove A3.1. If the signs
of a, b, c are not equal, then, using (9), A3.1 gives 0 = 0, which is true. If
τ(a) = τ(b) = τ(c) = +, then A3.1 becomes (ab)c = a(bc), which is true, for
(S,+, ·,≤) is assumed a ring. If τ(a) = τ(b) = τ(c) = −, then A3.1 becomes
−((−ab)c) = −a(−bc), which is true in the ring (S,+, ·,≤). To prove A4
replace (47) in the distributive law (a+ b)c = ab+ bc. Relations A3.2, A3.3
(and A5) are verified similarly.

Conversely, let (S,+, ×,⊆) be an e-ring. Define τ by (44) and a multipli-
cation “·” by (47). We shall show that (S,+, ·,≤) with “·” defined by (47)
and ≤ same as ⊆, is a l. o. ring. The order axioms are clearly fulfilled. We
shall prove the associative law: (ab)c = a(bc). The latter, according to (47)
reads:

a(bτ(c)×cτ(b)) = (aτ(b)×bτ(a))c. (48)

We note that τ(bτ(c)) = τ(b)τ(c), and τ(cτ(b)) = τ(b)τ(c), and therefore
τ(bτ(c)×cτ(b)) = τ(b)τ(c). Thus (48) becomes

aτ(b)τ(c)×(bτ(c)×cτ(b))τ(a) = (aτ(b)×bτ(a))τ(c)×cτ(a)τ(b),

which is true, according to A3.1. Let us prove now the distributive law.
Using that (a + b)λ = aλ + bλ, we see that the quasidistributive law (45):
(a + b)×cτ(a+b) = a×cτ(a) + b×cτ(b) is equivalent to (a + b)τ(c)×cτ(a+b) =
aτ(c)×cτ(a) + bτ(c)×cτ(b) and, using (47) we see that the latter is equivalent to
the distributive law (a + b)c = ac + bc in the corresponding ring. The rest
of the ring axioms are verified similarly. �
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Let us note that in an extended ring (S,+, ·, ×,≤) we can use mixed
notations — both from a ring and from an e-ring, e. g. formula (9) can be
written

a×b =

{
(ab)τ , if τ(a) = τ(b) = τ,
0, if τ(a) = −τ(b).

(49)

Theorem 5 shows that results from a field can be re-formulated as results
in the induced e-rings by means of (47) and vice versa, results from an e-ring
can be reformulated as results in the induced field by means of (9) (or (49)).

4 The E-algebra

In this Section we combine an e-linear space with an e-ring.

Definition 8. An e-algebra is an e-ring, which is an e-linear space over the
l. o. real field RD, and multiplications in both spaces are compatible.

Theorem 6. A system (S,+, ×,RD, ∗,⊆) is an e-algebra, iff:

AA1. (S,+, ×,⊆) is an e-ring;

bez linejnost?

AA2. (S,+,RD, ∗) is a centred quasivector space over the l. o. real field RD;

bez centred?

AA3. For all γ ∈ R, a, b ∈ S, we have (γ ∗ a)×b = γ ∗ (a×b).

Proof. We have to prove that a system (S,+, ×,RD, ∗,⊆) satisfying AA1,
AA2, AA3 is an e-algebra. According to the definition of an e-algebra it has
to be proved is that multiplication by scalars is inclusion isotone. Thus we
have to show a ⊆ b =⇒ γ ∗ a ⊆ γ ∗ b, for a, b ∈ S, γ ∈ R. If a, b ∈ S+,
using A3.3., we have (γ ∗ 1+)×a ⊆ (γ ∗ 1+)×b, which using AA3. implies
γ ∗ (1+×a) ⊆ γ ∗ (1+×b), that is γ ∗a ⊆ γ ∗ b. If a, b ∈ S− we substitute above
1+ by 1−. In the case a ∈ S−, b ∈ S+, that is a ⊆ 0 ⊆ b, using the above
method we can show the inclusions γ ∗ a ⊆ 0 and 0 ⊆ γ ∗ b, which imply
γ ∗ a ⊆ γ ∗ b. �

Theorem 7. The system RED = (R,+, ×,RD, ∗,⊆) with multiplication “×”
defined by (9) and multiplication by scalars γ ∗ a = |γ|a, is an e-algebra.

27



Proof. We have to prove that for any scalars α, β ∈ RD and any
b, c ∈ R the following four relations hold: i) α ∗ (β ∗ c) = (αβ) ∗ c; ii)
α∗ (b+ c) = α∗ b+α∗ c; iii) 1∗ c = c; iv) (α+β)∗ c = α∗ c+β ∗ c if αβ ≥ 0.
Using γ ∗ a = |γ|a verification is straightforward. �

Remark. In an e-algebra RED = (R,+, ×,RD, ∗,⊆) the two elements γ
and a in a product by scalar γ∗a (see the formulation of Theorem 5) are real
numbers, but γ is from RD and a is from RED. To avoid specifying which is
the real scalar and which is the element of the e-ring, we stipulate to always
place the real scalar (that is the element from RD) as a first multiplier (on
the left) and the element from RE as a second one (on the right). Thus in
RED we may write, e. g. an expression of the form a ∗ b + b×c; here it is
understood that a ∈ RD and b, c, d ∈ RE . If we want to express the products
in terms of the linear multiplication “·”, we have to make use of the formula:
a ∗ b = |a| · b and formula (9).

Clearly, an e-algebra RED = (R,+, ×,RD, ∗,⊆) is a triple of the form
(RE ,RD, ∗), such that multiplication in RE and multiplication by scalars
in RD are consistent. In the next section we shall consider the direct sum
of the spaces RD and RED. The space RD ⊕ RED abstractly summarizes
certain features of the space of generalized (not necessarily centred) intervals.

4.1 Spaces of Approximate Numbers (Intervals)

Consider the direct sum RD ⊕RED. The element a = (a′; a′′) ∈ RD ⊕RED,
is called an approximate number [36] or an interval. Clearly, (a′; 0) ∈ RD
and (0; a′′) ∈ RED. Addition of approximate numbers is:

a+ b = (a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′).

The opposite (inverse additive) of a = (a′, a′′) is:

opp(a′; a′′) = ¬(a′; a′′)− = (−a′; a′′−) = (−a′;−a′′).

In RD ⊕ RED we have multiplication by scalars (from RD):

γ ∗ (a′; a′′) = (γ ∗ a′; γ ∗ a′′) = (γ · a′; γ ∗ a′′) = (γa′; |γ|a′′), γ ∈ RD. (50)

Note that (−1) ∗ (a′; a′′) = ¬(a′; a′′) = (−a′; a′′) 6= opp(a′; a′′).
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Theorem 8. The system (RD ⊕ RED,+,RD, ∗) is a quasivector space.

Proof. We know that RD is a vector space and therefore is quasivector
one. Also (RED,+,RD, ∗) is a quasivector space. The direct sum of two
quasivector spaces (RD ⊕ RED,+,RD, ∗) is also a quasivector space. �

We have (−1) ∗ (b′; b′′) = (−b′; b′′). We shall further denote (−1) ∗ a by
¬a and call the operation ¬a negation ¬ (a′; a′′) = (−a′; a′′).

We denote the composition of “opp” and “neg” in RD ⊕ RED as con-
jugation (dual), symbolically a− = opp(¬a) = ¬(opp(a)). Note that in
RED negation is identity, ¬(0; a′′) = (0; a′′), and we have a− = opp(a) for
a ∈ RED, that is (0; a′′)− = opp(0; a′′) = (0;−a′′−) = (0;−a′′).

On the other side, in RD we have (a′; 0)− = (a′; 0), so that conjugation
and identity coincide in RD. In general we have:

a− = (a′; a′′)− = (−1) ∗ opp(a) = (a′; a′′−) = (a′;−a′′).

4.1.1 Multiplication

We define multiplication in RD ⊕ RED by:

(a′; a′′)×(b′; b′′) = (a′ · b′; a′ ∗ b′′ + b′ ∗ a′′ + a′′×b′′) (51)

= (a′b′; |a′|b′′ + |b′|a′′ + a′′×b′′),

using the same notation “×” as in RED. From the special cases:

(a′; 0)×(b′; 0) = (a′b′; 0),

(0; a′′)×(0; b′′) = (0; a′′×b′′),

we conclude that (51) extends the multiplications from RD and RED into
their direct sum RD ⊕ RED.

We also have

(a′; 0)×(b′; b′′) = (a′b′; a′ ∗ b′′) = (a′b′; |a′|b′′), (52)

showing that a multiplier of the form (a′; 0) acts like a scalar in multipli-
cation by scalars (50). Hence elements of the form (a′; 0) can be identified
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with scalars a′ ∈ RD. In particular, we have (−1; 0)×(b′; b′′) = (−b′; b′′).

Commutativity. It is immediately seen that multiplication (51) in
RD ⊕ RED is commutative.

Associativity. Multiplication (51) in RD ⊕ RED is not associative, as
the following result sshows.

Proposition 13. The relation a×(b×c) = (a×b)×c holds true, if a, b, c are
all proper, or are all improper.

Proof. Using (11) we have

a×(b×c) = (a′; a′′)×((b′; b′′)×(c′; c′′)) = (a′; a′′)×(b′c′; b′ ∗ c′′ + c′ ∗ b′′ + b′′×c′′)

= (a′(b′c′); a′ ∗ (b′ ∗ c′′ + c′ ∗ b′′ + b′′×c′′) + (b′c′) ∗ a′′

+ a′′×(b′ ∗ c′′ + c′ ∗ b′′ + b′′×c′′))

= (a′b′c′; (a′b′) ∗ c′′ + (a′c′) ∗ b′′ + a′ ∗ (b′′×c′′) + (b′c′) ∗ a′′

+ b′ ∗ (c′′×a′′τ(b×c)τ(c)) + c′ ∗ (b′′×a′′τ(b×c)τ(b)) + b′′×c′′×a′′τ(b×c)τ(b)τ(c)).

On the other side,

(a×b)×c = ((a′; a′′)×(b′; b′′))×(c′; c′′) = (a′b′; a′ ∗ b′′ + b′ ∗ a′′ + a′′×b′′)×(c′; c′′)

= ((a′b′)c′; (a′b′) ∗ c′′ + c′ ∗ (a′ ∗ b′′ + b′ ∗ a′′ + a′′×b′′)

+ (a′ ∗ b′′ + b′ ∗ a′′ + a′′×b′′)×c′′)

= (a′b′c′; (a′b′) ∗ c′′ + (c′a′) ∗ b′′ + (c′b′) ∗ a′′ + c′ ∗ (a′′×b′′)

+ a′ ∗ (b′′×c′′τ(a×b)τ(b)) + b′ ∗ (a′′×c′′τ(a×b)τ(a)) + a′′×b′′×c′′τ(a×b)τ(a)τ(b)).

In the case σ(a′′) = σ(b′′) = σ(c′′) = + both sides clearly coincide;
similarly we check the case σ(a′′) = σ(b′′) = σ(c′′) = −. If σ(a′′) = σ(b′′) =
σ(c′′) does not hold then relation a×(b×c) = (a×b)×c is generally violated. �

Identity. It is immediately seen that (1; 0) is an identity of (RD ⊕
RED, ×):

(a′; a′′)×(1; 0) = (a′; a′′).

Reciprocal. The solution x of the equation a×x = 1 for a′ 6= 0 is
x = 1×/a = a−1 = (1/a′;−a′′/|a′|2). We say that a−1 is the reciprocal of a.
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Indeed, we have:

a×a−1 = (a′; a′′)×(1/a′;−a′′/|a′|2)
= (1; (1/|a′|) ∗ a′′ + a′ ∗ (−a′′/|a′|2) + a′′×(−a′′/|a′|2))
= (1; a′′/|a′|+ |a′|(−a′′/|a′|2) + 0) = (1; 0).

We thus proved the following

Proposition 14. The system (RD⊕RED, ×) is a commutative groupoid with
identity.

Proposition 15. The operations × and ∗ are consistent, that is

(γ ∗ (a′; a′′))×(b′; b′′) = γ ∗ ((a′; a′′)×(b′; b′′)).

Proof. Both sides can be written

(γ ∗ (a′; a′′))×(b′; b′′) = (γa′; |γ|a′′)×(b′; b′′)

= (γa′b′; |γa′|b′′ + |γb′|a′′ + |γ|(a′′×b′′)),

γ ∗ ((a′; a′′)×(b′; b′′)) = γ ∗ (a′b′; |a′|b′′ + |b′|a′′ + (a′′×b′′))

= (γa′b′; |γa′|b′′ + |γb′|a′′ + |γ|(a′′×b′′)),

which proves the property. �

We have:

(0; a′′)×(b′; b′′) = (0; b′ ∗ a′′ + a′′×b′′) = (0; |b′|a′′ + a′′×b′′), (53)

showing that RED is an “ideal” of RD⊕RED. In particular, (a′; 0)×(0; b′′) =
(0; a′ ∗ b′′) = (0; |a′|b′′).

We note that formula (51) is a familiar construction for endowing the
e-algebra RED = (R,+, ×,RD, ∗,⊆) with an identity. That is, we embed a
ringoid without identity into a direct sum of this ringoid and a ring with
identity, cf. [1], [3] (p. 337), [34]. In our case as a ring with identity we use
the familiar ring RD, arriving thus to the direct sum RD ⊕ RED.

Distributivity. We shall next investigate distributivity in RD ⊕ RED.
Using that

opp((a′; a′′)) = (−a′;−a′′),
(a′; a′′)− = (a′;−a′′),
¬(a′; a′′) = (−a′; a′′),
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it is easy to check: (a×b)− = opp(a)×opp(b), (a×b) = (¬a)×(¬b). Multipli-
cation is distributive with respect to conjugation: (a×b)− = (a−)×(b−).

Using (52) and (53) we have

a×b = (a′b′; a′ ∗ b′′ + b′ ∗ a′′ + a′′×b′′)

= (a′b′; a′ ∗ b′′) + (0; b′ ∗ a′′ + a′′×b′′)

= (a′; 0)×(b′; b′′) + (0; a′′)×(b′; b′′),

= (a′; 0)×b+ (0; a′′)×b.

The relation a×b = ((a′; 0)+(0; a′′))×b can be written ((a′; 0)+(0; a′′))×c =
(a′; 0)×c+ (0; a′′)×c, or, the following distributive relation holds:

((a′; 0) + (0; b′′))×c = (a′; 0)×c+ (0; b′′)×c. (54)

We next want to extend (54) for the case when the left-hand side of the
equality has the more general form ((a′; a′′) + (b′; b′′))×c. In what follows we
shall write σ(a′′) = τ(a′′), there will be no confusion.

We define σ(a) for a ∈ RD ⊕ RED as a pair of signs:

σ(a) = σ(a′; a′′) = (σ(a′), σ(a′′)) = (σ(a′), τ(a′′)).

Further we define:

a×bσ(a) = ((a′; a′′))×b(σ(a′),σ(a′′))

= ((a′; 0) + (0; a′′))×b(σ(a′),σ(a′′))

= (a′; 0)×bσ(a′) + (0; a′′)×bσ(a′′). (55)

Thus we have:

a×bσ(a) = (a′; 0)×bσ(a′) + (0; a′′)×bσ(a′′)

= (a′; 0)×(b′; b′′σ(a′)) + (0; a′′)×(b′; b′′σ(a′′)) (56)

= (a′b′; a′ ∗ b′′σ(a′)) + (0; b′ ∗ a′′ + a′′×b′′σ(a′′))

= (a′b′; a′ ∗ b′′σ(a′) + b′ ∗ a′′ + a′′×b′′σ(a′′)).

Using notation (55) we formulate the following law in RD ⊕ RED:

Theorem 9. For a, b, c ∈ RD ⊕ RED:

(a+ b)×cσ(a+b) = a×cσ(a) + b×cσ(b). (57)
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Proof. Using (55), (55) and the quasidistributive laws in a e-ring (45)
and in a symmetric q-linear space (39), we obtain:

a×cσ(a) + b×cσ(b)

= (a′c′; a′ ∗ c′′σ(a′) + c′ ∗ a′′ + a′′×c′′σ(a′′))

+ (b′c′; b′ ∗ c′′σ(b′) + c′ ∗ b′′ + b′′×c′′σ(b′′))

= ((a′ + b′)c′; (a′ + b′) ∗ c′′σ(a′+b′)
+ c′ ∗ (a′′ + b′′) + (a′′ + b′′)×c′′σ(a′′+b′′))

= (a+ b)×cσ(a+b).

�

As special cases of the distributivity relation (57) we obtain:

((a′; 0) + (0; b′′))×(c′; 0) = (a′c′; c′ ∗ b′′) = (a′c′; |c′|b′′)

((a′; 0) + (0; a′′))×(0; c′′) = (0; a′ ∗ c′′ + b′′×c′′) = (0; |a′|b′′ + b′′×c′′).

Inclusion isotonicity of multiplication. The relation ⊆ is extended
from RE to RD ⊕ RED as follows:

a ⊆ b⇐⇒ |b′ − a′| ≤ b′′ − a′′. (58)

Note that the condition |b′ − a′| ≤ b′′ − a′′ means that there exists a
γ ∈ R such that 0 ≤ γ = b′′ − a′′ and |b′ − a′| ≤ γ.

The inclusion 0 ⊆ a = (a′; a′′) is equivalent to |a′| ≤ a′′ and the inclusion
b = (b′; b′′) ⊆ 0 is equivalent to |b′| ≤ −b′′, that is to b′′ ⊆ 0 (b′′ ≤ 0) and
|b′| ≤ −b′′.

If b = (b′; b′′) is such that b′′ ≥ 0 and a = (a′; 0) then a ⊆ b means
|b′ − a′| ≤ b′′, that is −b′′ ≤ b′ − a′ ≤ b′′.

Inclusion isotonicity of addition: a ⊆ b⇐⇒ a+c ⊆ b+c is an immediate
consequence of (58). We now prove inclusion isotonicity of interval multi-
plication.

Proposition 16. If a, b, c ∈ RD ⊕ RED, then

a ⊆ b =⇒ a×c ⊆ b×c. (59)
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Proof. Relation a×c ⊆ b×c is, according to (58):

|b′c′ − a′c′| ≤ b′ ∗ c′′ + c′ ∗ b′′ + b′′×c′′ − (a′ ∗ c′′ + c′ ∗ a′′ + a′′×c′′)

= |b′|c′′ + |c′|b′′ + b′′×c′′ − (|a′|c′′ + |c′|a′′ + a′′×c′′)

= (|b′|c′′ − |a′|c′′) + (|c′|b′′ − |c′|a′′) + (b′′×c′′ − a′′×c′′)
= (||b′| − |a′||)c′′σ(|b′|−|a′|) + |c′|(b′′ − a′′) + (b′′×c′′ + a′′−×c

′′
−)

= (||b′| − |a′||)c′′σ(|b′|−|a′|) + |c′|(b′′ − a′′) + (b′′×c′′ + a′′−×c
′′
−).

Theorem 10. (RD ⊕RED,+, ×,⊆) is an commutative e-ring with identity.

4.1.2 Division

For a ∈ RD ⊕ RED denote τ(a′; a′′) = σ(a′′) = τ(a′′).
We defined the reciprocal 1×/a = a−1 of a as the solution x of the equation

a×x = 1 for a′ 6= 0. We have 1×/a = a−1 = (1/a′;−a′′/|a′|2).

Let us examine the solution x of the equation a×x = b. Denoting a =
(a′; a′′), b = (b′; b′′), x = (x′;x′′), we have:

(a′; a′′)×(x′;x′′) = (a′x′; a′ ∗ x′′ + x′ ∗ a′′ + a′′×x′′)

= (a′x′; |a′|x′′ + |x′|a′′ + a′′×x′′).

Thus a×x = b can be written component-wise: (a′x′; |a′|x′′ + |x′|a′′ +
a′′×x′′) = (b′; b′′).

Assuming a′ 6= 0, the latter gives x′ = b′/a′ and the equation for x′′:
|a′|x′′ + |b′/a′|a′′ + a′′×x′′ = b′′, which can be written as:

|a′|x′′ + (a′′×x′′) = b′′ − |b
′|
|a′|

a′′. (60)

or, assuming b′ 6= 0,

x′′ +
1

|a′|
(a′′×x′′) =

|b′|
|a′|

(
b′′

|b′|
− a′′

|a′|
). (61)

We look for possible solutions for x′′ of (61). Note that the sign of the right
hand-side

r =
|b′|
|a′|

(
b′′

|b′|
− a′′

|a′|
)

of (61) depends on the ratio of κ(a) and κ(b), where κ(a) = a′′/|a′| is intro-
duced and studied in [10]. Note also that, according to (9) the product a′′×x′′
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is either equal to 0 (if σ(x′′) 6= σ(a′′) or is equal to |a′′|x′′ (if σ(x′′) = σ(a′′);
hence the sign of the left hand-side of (61) is equal to the sign of x′′.

We now consider different cases.
1. Assume σ(a′′) = −σ(b′′). Then σ(r) = σ(b′′) = −σ(a′′). As the left

hand-side of (61) has the sign of x′′, σ(x′′) = σ(r), we see that x′′ and a′′

have different signs and hence a′′×x′′ = 0. Thus (61) becomes

x′′ =
|b′|
|a′|

(
b′′

|b′|
− a′′

|a′|
) = (

b′′

|a′|
− a′′

|a′|2
), (62)

so that in this case:

x = b×/a = (b′/a′;
|b′|
|a′|

(
b′′

|b′|
− a′′

|a′|
)). (63)

2. Assume σ(a′′) = σ(b′′). Then

σ(x′′) =

{
σ(b′′) = σ(a′′), if |κ(b)| ≥ |κ(a)|,
−σ(b′′) = −σ(a′′), if |κ(b)| < |κ(a)|.

In the subcase |κ(b)| ≥ |κ(a)|, we have σ(x′′) = σ(a′′), resp., by (??),
a′′×x′′ = |a′′|x′′, so that (61) becomes

x′′ =
|b′|

|a′|+ |a′′|
(
b′′

|b′|
− a′′

|a′|
) =

1

|a′|+ |a′′|
(b′′ − |b

′|
|a′|

a′′), (64)

so that

x = b×/a = (b′/a′;
|b′|

|a′|+ |a′′|
(
b′′

|b′|
− a′′

|a′|
)). (65)

In the subcase |κ(b)| < |κ(a)|, we have σ(x′′) = −σ(a′′), resp., x′′×a′′ = 0,
so that (61) becomes

x′′ =
|b′|
|a′|

(
b′′

|b′|
− a′′

|a′|
), (66)

resp.

x = b×/a = (b′/a′;
|b′|
|a′|

(
b′′

|b′|
− a′′

|a′|
)). (67)

It is interesting to note that
x = b×/a = b×(1×/a) = (b′; b′′)×(1/a′;−a′′/|a′|2)
= (b′/a′;−(|b′|/|a′|2)a′′ + (1/|a′|)b′′).

The above calculations can be summarized in the following
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Proposition 17. The solution of a×x = b for the case a′ 6= 0 is x =
(b′/a′;x′′), where

x′′ =

{ |b′|
|a′|+|a′′|(

b′′

|b′| −
a′′

|a′|), if σ(a′′) = σ(b′′) and |κ(b)| ≥ |κ(a)|,
x′′ = |b′|

|a′|(
b′′

|b′| −
a′′

|a′|) = b×(1×/a), otherwise.

Proof. It is easy to check that for a′ 6= 0 the approximate number
x = (b′/a′;x′′), where x′′ is given by the above formula, is a solution of
a×x = 1, resp. of a×x = b. �

Consider now the case a′ = 0. In this case we must have b′ = 0 as well.
We also assume a′′ 6= 0, as the case a′′ = 0 is not interesting. We thus have:

(0, a′′)×(x′;x′′) = (0;x′ ∗ a′′ + a′′×x′′) = (0; b′′),

that is we must solve |x′|a′′ + a′′×x′′ = b′′. If b′′ = 0, then every x′′ with
τ(x′′) = −τ(a′′) is a solution for (0; a′′)×(0;x′′) = (0; 0) due to a′′×x′′ = 0.
Consider the case b′′ 6= 0. Assume first that τ(a′′) = τ(b′′). In the subcase
|x′|a′′ ≤ b′′, that is |x′| ≤ b′′/a′′ we have a′′×x′′ = b′′ − |x′|a′′ showing that
a′′×x′′ has the sign of b′′ (of a′′). Hence we can write |a′′|x′′ = b′′ − |x′|a′′,
that is:

x′′ = (b′′ − |x′|a′′)/|a′′|,

e. g. x′′ = b′′/|a′′| (x′ = 0),

so that the solution is x = (0; b′′/|a′′|).

Indeed, we have (0; a′′)×(0; b′′/|a′′|) = (0; b′′). More generally, we have:

x′ = ε(b′′/a′′), ε ∈ [−1, 1], x′′ = (b′′ − |x′|a′′)/|a′′|.

It is easy to see that there is no solution in the rest of the cases.

We used the following property:

If a×b 6= 0, then a×b = |a|b = |b|a, and τ(a×b) = τ(a) = τ(b).
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5 Concluding Remarks

We have shown that errors, resp. symmetric intervals, possess algebraic
properties somewhat different from the properties of the real numbers. Our
investigations show the importance of the midpoint-radius representation of
intervals, already noticed in [33], see also [14]. Similar representation has
been recently announced in an advanced software for interval computations
[32], [31].

The theory of e-rings can be used to develop a general abstract algebraic
theory of intervals. We wish to note that the quasidistributive law (45) is
a special case of the quasidistributive relations for generalized intervals ob-
tained in [26].
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Appendix 1.

The hierarchy of interval spaces:

1. Familiar sets and algebraic systems used to define interval systems:

R The set of reals

RD = (R,+, ·,≤) The ordered real field

Rn The set of real n-tuples

RnD = (Rn,+,RD, ·,≤) The ordered (n-dim.) linear space (R1
D = RD)

2. Quasivector spaces (with group structure)

RnD = (Rn,+,RD, ∗,≤) The ordered (n-dim.) centred quasivector
space; former: RnE = (Rn,+,RD, ∗,≤) or RnE = (Rn,+,RD, ∗,⊆)

RnED = (Rn,+,RD, ·, ∗,≤) The ordered (n-dim.) (centred quasi)vector
space (extended, mixed)

R1
E = (R,+,RD, ∗,⊆) The one-dimensional case R1

E 6= RE ?

(RnD ⊕RnED,+,RD, ∗) The quasivector space (noncentred)
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RnDED = RnD ⊕ RnED = (R2n,+,RD, ∗) The quasivector space (noncen-
tred)

In = (RnE ⊕ RnD,+,RD, ∗,⊆) The ordered quasivector space

I1 = (R1
E ⊕ RD,+,RD, ∗,⊆) The one-dim. case

3. E-ring:

RE = (R,+, ×,⊆) The e-ring (e-field) τ -operation

4. Isotone systems (e-spaces, i-spaces) — always ordered:

RED = (R,+, ×,RD, ∗,⊆) = (RE ,RD, ∗) The e-algebra

I = (RD ⊕ RED,+, ×,⊆)

I = (RD ⊕ RED,+, ×,RD, ∗,⊆) The i-algebra

In = (RD ⊕ RED)n = RnD ⊕ RnED
Appendix 2.

Using the operation hyperbolic multiplication of generalized intervals in
end-point form a = [a−, a+], b = [b−, b+]

a · b = [a−b−, a+b+]

E. Kaucher gives the following formula for multiplication of generalized
intervals [8]:

p =


aσ(b)bσ(a), if a, b ∈ Sr ∪ Sl
σ(b′)|b| ∗ a, if Cond(a, b);
σ(a′)|a| ∗ b, if Cond(b, a);
(0; 0), if a ∈ Tf , b ∈ Tp or b ∈ Tf , a ∈ Tp,

(68)

wherein

Sr = {a | a− ≥ 0, a+ ≥ 0};
Sl = {a | a− ≤ 0, a+ ≤ 0};
Tf = {a | a− ≤ 0 ≤ a+};
Tp = {a | a+ ≤ 0 ≤ a−}.
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